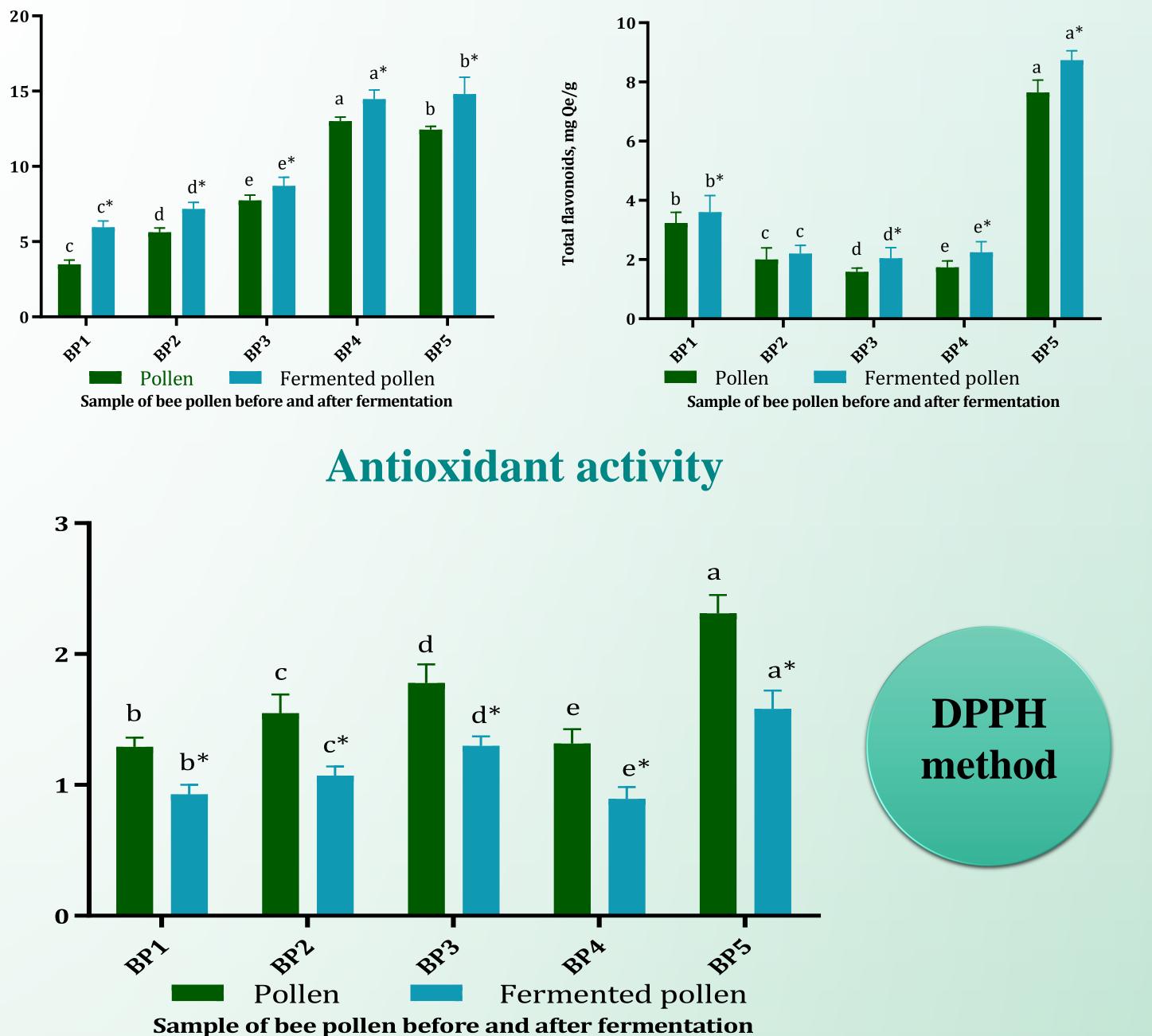
23 seven mentatio of bee pollen on the nutritional and antioxidant

¹Department of Microbiology. Faculty **AGA BEACTIONS** Sechnologies. University of Agricultural Saianganandryaterinatrianadicinstellianan Bezzhoreania


²Department of Apiculture. Faculty of Animal Science and Biotechnologies. University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

INTRODUCTION

Bee pollen has a high nutritional value, being a good source of protein, carbohydrates, lipids, and fibers, but also bioactive compounds such as polyphenols, flavonoids, and vitamins. All of these make it the ideal medium to be used as a substrate for fermentation being considered by some authors probiotic and prebiotic (Zuluaga-Dominguez et al. 2019; Mora-Adames et al., 2021).

Total polyphenols content Folin Chocalteu method 20 **-**

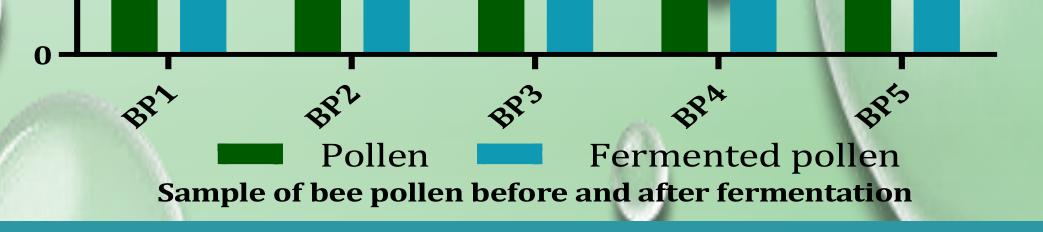
Total flavonoids content AlCl3 method

RESULTS

OBJECTIVE

The aim of this study was the use of lactic acid bacteria, in the solid fermentation of bee pollen to obtain a product with high nutritional properties and beneficial bacteria for the intestinal microbiota of bees.

MATERIALS AND METHODS


Four samples of bee pollen collected from the USAMV Cluj Apiary were analyzed before and after the fermentation process in order to determine the energy value, the biologically active compounds and to determine the antioxidant activity using spectrophotometric and HPLC Lactobacillus plantarum was methods. used for the

fermentation process of the bee pollen.

absorbance

BP5	23.77 ± 0.25	2.81±0.21	23.11±0.12	6.66±0.20	67.41	433.14	The St.
BP1 Ferm.	14.32±0.12	2.41±0.10	20.71±0.10	5.94±0.14	70.94	431.01	
BP2 Ferm.	14.65 ± 0.17	2.70±0.12	20.00±0.22	7.48±0.31	69.87	437.54	
BP3 Ferm.	13.89±0.23	2.31±0.12	18.06±0.18	4.19±0.21	75.44	422.32	
BP4 Ferm.	13.53±0.17	2.59±0.22	17.06±0.09	4.28±0.11	76.11	421.64	
BP5 Ferm.	13.67±0.13	2.76±0.11	21.71±0.15	5.99±0.12	69.54	429.83	

CONCLUSIONS

The obtained results show that probiotic fermentation of bee pollen seems to increase the nutritional and biological value of bee pollen, but further studies are required to evaluate the bioavailability of the probiotic bacteria from fermented pollen for bees and its beneficial impact on their gut microbiota.

REFERENCES

1. Mora-Adames, W.I.; Fuenmayor, C.A.; Benavides-Martín, M.A.; Algecira-Enciso, N.A.; Quicazán, M.C. Bee Pollen as a Novel Substrate in Pilot-Scale Probiotic-Mediated Lactic Fermentation Processes. LWT 2021, 141, 110868, 2. Zuluaga-Dominguez, C.M.; Quicazan, M. Effect of Fermentation on Structural Characteristics and Bioactive Compounds of Bee-Pollen Based Food. J. Apic. Sci. 2019, 63, 209–222,